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Abstract—We live in a world surrounded with ‘fake news’ and 

manipulated information, so a system assisting people with 

knowing what information to trust would be beneficial. Our 

research investigates situations where the presenters themselves 

have doubts about the information they are delivering, and we 

detect this via advanced affective computing techniques. To this 

end we examine the physiological foundations for observer 

recognition of the doubt effect: the subjective belief or disbelief of 

a presenter in some information he or she is presenting. Firstly, we 

construct stimulus videos that display presenters delivering 

information about which we manipulate their degree of doubt.  We 

then show these stimuli to observers, and record four of their 

physiological signals. We find that a generalised neural network 

trained with physiological features is more accurate in 

differentiating the presenters’ doubt/manipulated belief when 

compared with the same observers’ own conscious judgments. The 

affective recognition performance improves when we analyse the 

physiological signals using multi-task learning techniques to train 

personalised and group personalised neural networks. The ability 

to recognise this doubt effect derives from observers’ fundamental 

emotional reactions to the viewed stimuli, reflected in their 

physiological responses, and learnt by our neural networks. We 

believe this system using observer physiological signals collected in 

real life could reveal accurate and hidden audience distrust, which 

could in turn lead to enhanced truthfulness in future public-

presented statements. 

Keywords—Neural networks (NN), Multitask learning (MTL), 

Blood volume pulse, Galvanic skin response, Skin temperature, 

Pupillary dilation, Information veracity, Doubt, Trust, Subjective 

belief, Presenters, Audiences 

I. INTRODUCTION 

People learn, cooperate, and socially bond through 
communication. To smooth the learning process, facilitate 

collaboration and maintain enduring social bonds, information 
and knowledge being shared and exchanged should be honest 
and faithful [1] so that people can navigate the information and 
knowledge communicated with confidence and trust. However, 
development of information technologies has revolutionised the 
way communications are produced and distributed, with the 
side-effect of facilitating the proliferation of manipulated 
information. The use of incorrect or exaggerated product 
statements for commercial benefit has been widespread in 
advertising for many decades [2]. In recent times, on social 
media, the increasing prevalence of false stories, such as fake 
news, is also concerning [3]. Credibility of information 
communication becomes problematic under the weight of  
manipulated information and it could potentially cause the 
people being deceived to suffer from devastating consequences 
in their personal lives [3]. Therefore, the skill of knowing whom 
and what to trust is essential to assist people in avoiding being 
deceived. [4]. 

However, people detect deception consciously at only 
around chance levels [5]. At least this is the case when people 
are asked to provide direct cognitive judgments about the 
dishonesty of others. Yet, when people’s judgments are assessed 
indirectly through their non-cognitive signals, they do seem to 
be better at distinguishing liars from truth-tellers, even though 
they may not be consciously aware that they are being deceived 
[6]. DePaulo et al. [7] and Albrechtsen et al. [8] found that 
people’s instant and intuitive judgements seem to distinguish 
liars from truth-tellers better than their slow and deliberative 
judgements made after conscious reasoning. This may be 
because some less apparent cues of deceit given away by a 
person with the intent to deceive may be unconsciously picked 
up by observers, alerting them to potential threats [1]. People 
being unconsciously affected by subtle deceiving cues may not 
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experience obvious changes in their mental processes, but since 
human feelings are always accompanied by physiological 
changes [9], their physiological responses cause measurable 
reactions. Thus, physiological signals from people who are being 
deceived may act as a deceit detector.  

Consistent aberrations of physiological response have been 
observed in liars. Since lying requires stressful cognitive 
processes to suppress the truth while making counterfactual 
statements, it is cognitively and emotionally taxing, resulting in 
increased sympathetic nervous system (SNS) activity [10]. As a 
result, liars’ galvanic skin response, pupil dilation and heart rate 
increase [11], [12], and these effects could subtly affect 
behaviour, posture, or dynamics of movement and thus be 
visible to observers. People being deceived are sensitive to the 
subtle cognitive and emotional cues conveyed by liars and in 
response have similar physiological reactions [1]. For example, 
it has been found that when observing a liar, participants have 
lowered skin temperature on their fingers and greater pupillary 
responses [13]. Furthermore, in [14], people were found to have 
increased fixations and durations of eye gaze attending to 
manipulated areas of images. Higher heart rate was also found 
in people who watched deceptive events [15].  

Despite physiological correlates of intentional deceit being 
examined previously, we could find no similar work to our 
research into inadvertent lying, a more subtle form of deceit. Our 
previous work explored the feasibility of using observers’ pupil 
dilation to detect whether a person’s subjective belief in some 
information has been manipulated [16]. The manipulated 
subjective belief refers to the situation where the presenter has 
cause to doubt the information they are presenting, but he or she 
is not explicitly intending to deceive, and so is conveying a 
subtle form of dishonest information. We found that neural 
networks trained with statistical features of observers’ pupillary 
size reached a higher accuracy in differentiating the manipulated 
subjective belief when compared to each observer’s own 
veracity judgments.  

Here, we extend this work to ascertain whether neural 
networks trained on observers’ other physiological signals such 
as blood volume pulse (BVP), galvanic skin responses (GSR), 
and skin temperature (ST) can identify presenters’ subjective 
belief. Also, as it has been shown that a combination of multiple 
physiological signals is better at recognising an individual’s 
affective state than a single physiological signal [9], we examine 
whether an integration of multiple physiological signals from 

observers is more accurate at detecting presenters’ subjective 
belief or doubt. Additionally, since people may have different 
physiological responses to the same emotional stimulus [17], 
[18], we investigate personalisation of this subjective belief 
detection for individuals and groups by adopting a multi-task 
learning (MTL) approach. We seek to discover if the analysis of 
physiological indicators from observers and clusters of 
observers watching deceiving presenters would indicate the 
presence of subjective doubt on the part of the presenters. If so, 
this approach may reveal hidden audience distrust, help people 
notice their distrust, and ultimately could lead to increased 
truthfulness in public messaging. 

II. EXPERIMENTAL DESIGN 

This experiment uses observers’ blood volume pulse (BVP), 
galvanic skin response (GSR), skin temperature (ST) and 
pupillary dilation (PD) signals to detect presenters’ 
(manipulated) subjective belief in the information they present. 
To create experiment materials, following a similar experimental 
design to our pilot study [16], we first constructed eight extracts 
formatted as book publisher advertising material. We then 
recorded thirty-two videos, each of which contains a presenter 
reading out one of the constructed book extracts. Subsequently, 
we recruited some participants as observers to watch the 
recorded video stimuli while we recorded their BVP, GSR, ST 
and PD. We also collected observers’ conscious judgment of the 
presenters’ belief in the content presented in the videos via a 
survey. A schematic diagram of the experiment setup is shown 
in Fig. 1. 

A. Book Extracts Construction 

Eight extracts from books or web pages [19]–[25] were 
constructed, phrased and formatted like book publisher 
advertising materials. The contents of these extracts fall into four 
commonly discussed topics, namely health, astronomy, 
humanities and lifestyle, to ensure each participant has similar 
familiarity with the contents overall. For each topic, we 
constructed an extract based on the real content of a relevant 
book or webpage, or based on topics within the realm of 
common knowledge yet controversial enough to allow for the 
doubt effect. We then constructed another cognate extract by 
manipulating the content of another relevant book, webpage, or 
common knowledge. In all, we constructed a total of eight 
extracts which (to the authors) appear of similar plausibility in 
terms of their contents.  

Fig. 1. A schematic diagram of our experiment setup 
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B. Presenter Recording: Creating Video Stimuli 

Thirty-two videos were subsequently recorded, each of 
which involves an individual presenting one of the above-
mentioned extracts. To record these video stimuli, eight 
presenters, four males and four females, were recruited as 
actors, with Ethics Approval obtained from the Australian 
National University Human Research Ethics Committee. Their 
task was to read out given extracts smoothly. None of these 
presenters were professional actors. We also ensure for each age 
group from 18-24, 25-39, 40-49, and 50+, there is one male and 
one female presenter to maintain age and gender balance. To 
minimize the influence of topic familiarity for presenters, each 
presenter only read one extract from each topic and thus 
presented four extracts covering four topics in total.  

After giving their informed consent, presenters first 
presented two book extracts (selected in an order balanced 
fashion) which they could presume to be true (naive subjective 
belief condition). In the brief period before presenting the third 
and fourth extracts, they were told “Sorry the next two are a bit 
bogus. Please present them anyway”. They then presented the 
other two extracts (manipulated subjective belief condition). 
While they were presenting the four extracts, a camera was 
placed at 1 meter from the actors and filmed them from the chest 
up. In this way, we recorded a total of sixteen 35–60 sec videos 
in which presenters’ subjective belief in the topics have been 
manipulated to induce subjective disbelief, and sixteen videos 
where their subjective belief is unchanged. These videos were 
subsequently shown to observers. 

C. Observer Experiment: Judging manipulated belief 

1) Participants and Procedure: Thirty participants were 
recruited as observers, with Ethics Approval obtained from the 
Australian National University Human Research Ethics 
Committee. Seven participants were excluded due to one or 
more predefined exclusion criteria: being acquainted with the 
video presenters, having a history of cardiovascular disease, and 
technical failures of sensors. The final observer samples consist 
of twenty-three participants, thirteen males and ten females, 
from 18 to 24 years in age (average = 21.2, standard deviation 
= 2.0). 

The observer experiment was conducted with each 
individual participant in the same quiet experiment room. 
Participants were forewarned that their goal during the 
experiment was to identify the veracity of the presented content. 
This is because dishonest information has a higher chance of 
getting caught when observers are alerted to the possibility of 
dishonesty in advance [13], which may also apply to 
manipulated (subjective doubt) beliefs. After providing written 
informed consent, an Empatica E4 watch [26] was attached to 
participants on the wrist of their non-dominant hand to collect 
physiological signals. An EyeTribe eye tracker [27] was also 
placed in front of them to collect their pupillary responses. After 
filling in a questionnaire to collect demographic and health 
information that may affect physiological responses, 
participants then watched sixteen presenter videos one by one 
and were asked to provide responses to questions of “Do you 
feel the presenter is a trustworthy person?” and “Do you think 
the presenter trusts what he/she said?” on a binary scale (yes, or 

no). The videos were presented in an order balanced way to 
avoid effects of presentation sequencing. 

2) Sensor Recording: We collected four physiological 
signals from observers, namely BVP, GSR, ST and PD as well 
as a derived physiological signal, HR. 

a) Blood Volume Pulse (BVP): indicates the volume of 
blood running through the vessels over a given period, affected 
by SNS activation in response to emotional reactions [28]. For 
example, BVP is found to be positively correlated with sadness 
and negatively correlated with stress [29]. Other cardiovascular 
measures, such as heart rate (HR) and heart rate variability 
(HRV) can be derived from BVP, and these are useful 
predictors of emotional valence [30].  In this experiment, we 
used an Empatica E4 wristband to collect BVP with a sampling 
rate of 64Hz [26]. 

b) Galvanic Skin Response (GSR): measures the amount 
of sweat on a person’ skin. It contains a slow-moving tonic 
component, showing general activity of perspiratory glands 
caused by body or external temperature, and a faster-responding 
phasic component which is linearly correlated with the intensity 
of arousal in emotional states [31]. In this study, we recorded 
observers’ GSR using an Empatica E4 wristband with a 
sampling rate of 4Hz. 

c) Skin Temperature (ST): fluctuates due to 
vasodilatation of blood vessels induced by increased SNS 
activity [32]. It is found to be negatively correlated with threat 
emotions such as stress [33] and fear [34]. In this study, we 
recorded observers’ wrist ST using an Empatica E4 wristband 
with a sampling rate of 4Hz 

d) Pupillary Dilation (PD): provides an indication of 
changes and strengths in mental activites, and has been found 
to be correlated with emotionally engaging stimuli [35]. In this 
study, we used an EyeTribe eye tracker to capture pupil size at 
a sampling rate of 60Hz. 

After data collection, 193 manipulated and 175 
unmanipulated subjective belief observations were obtained. In 
the rest of this paper we will mostly use doubting and trusting to 
succinctly express presenters’ manipulated subjective belief and 
unmanipulated subjective belief, respectively.  

III. METHODOLOGY 

To analyse observers’ physiological responses, we first pre-
processed each physiological signal with segmentation, noise 
removal and normalisation before we extracted features. We 
then trained an MTL neural network (NN) to customise a model 
for each type of person to assess presenters’ doubting and 
trusting subjective belief. 

A. Pre-processing 

Transient noise was observed in the raw physiological 
signals due to participant movement, which mostly happened at 
the beginning and end of the recording when they filled in the 
demographic questionnaire and post-experiment survey. For all 
participants and all signals, we first extracted the subset of raw 
signal data recorded as participants watched presenter videos. 
Cubic spline interpolation was then applied to construct missing 
pupil size data caused by occasional eye blinks [36]. This 
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procedure was employed on the pupil data of left and right eyes 
separately. 

Physiological signals are individual-dependent. This means 
that different individuals may have the same physiological signal 
in different ranges. To reduce between-participant differences, 
we applied a min-max scaler to all physiological signals 
separately, scaling signals to a range between 0 and 1. 

After normalisation, we smoothed the signals to remove 
noise artefacts. For BVP, GSR and ST, we used a lowpass 
Butterworth filter with an order of 6 and a cut-off frequency of 
0.5 Hz, 0.2 Hz [37] and 0.3 Hz [38] respectively to form a low-
passed (LP) BVP, GSR and ST signal. For PD, we applied a 10-
point Hann moving window average to left pupil and right pupil 
data separately [36].  

Following this, we segmented both the normalised signals 
and filtered signals by each video watching session, so that each 
segmented physiological data set corresponds to one observer’s 
physiological state evoked by the experience of watching one 
video.  

B. Features Extraction 

After pre-processing the raw signals, we generated time- 
and frequency-domain features that characterise the changes in 
the physiological signals over the time participants spent on 
watching each video. 

1) BVP features: Following [39] which uses BVP for 
emotion recognition, we first calculated the following eight 
time-domain features from the normalised and LP BVP. 

• Minimum 

• Maximum 

• Mean 

• Standard Deviation 

• Variance 

• Root Mean Square 

• Means of the Absolute Values of the First Difference 

• Means of the Absolute Values of the Second Difference 
Following [40], we derived heart rate (HR) from BVP by 

identifying systolic peaks from BVP. We then calculated the 
above-mentioned eight time-domain features from HR. 
Additionally, we extracted another eight time-domain features 
from HR which were shown to be correlated with external 
stimuli [41]. 

• Inter Beats Interval (IBI) 

• Average Beats per Minute (BPM) 

• Standard Deviation of Intervals between Heart Beats 
(SDNN) 

• Standard Deviation of Differences between Adjacent R-
R Intervals (SDSD) 

• Root Mean Square of Differences between Adjacent R-R 
Intervals (rMSSD) 

• Percentage of differences greater than 20ms (pNN20) 

• Percentage of differences greater than 50ms (pNN50) 

• Proportion of differences greater than 50ms / 20ms 
(pNN50/pNN20) 

2) GSR features: For normalised and LP GSR, we first 
calculated sixteen time-domain features. For each of the 
normalised and LP GSR, we calculated minimum, maximum, 

mean, standard deviation, variance, root mean square, and 
means of the absolute values of the first and second differences.  

To extract the DC component of GSR [31], we applied a 
very low pass Butterworth filter with a cut-off frequency of 0.08 
Hz to derive the Very Low Pass signal (VLP). We additionally 
obtained a detrended SCR signal without DC component by 
removing continuous piecewise linear trend in both LP and VLP 
GSR.  Subsequently, we calculated the following seven 
features: 

• Number of SCR occurences for VLP, LP and normalised 
GSR (3 features) 

• Mean of amplitudes of SCRs in VLP, LP and normalised 
GSR (3 features) 

• Ratio of SCR occurrences in VLP to occurrences in LP 
3) ST features: Similarly to the GSR signal, we first 

calculated eight time-domain features, including minimum, 
maximum, mean, standard deviation, variance, root mean 
square, and means of the absolute values of the first and second 
differences for the normalised and LP ST. Then we used a very 
low pass Butterworth filter with a cut-off frequency of 0.08 Hz 
to the normalised ST to form the VLP ST signal. We computed 
the numbers and the mean of amplitudes of peaks for VLP and 
LP ST signals as well as the ratio of peaks in VLP to those in 
LP as features. 

4) PD features: For normalised left, right pupillary size, 
and the averaged pupillary size of left and right eyes, the 
minimum, maximum, mean, standard deviation, variance, root 
mean square, and means of the absolute values of the first and 
second difference were calculated as features. We then used a 
very low pass Butterworth filter with a cut-off frequency of 0.08 
Hz to the normalised left, right and averaged PD signal to form 
the left VLP PD and right VLP PD signal.  The same filter was 
also applied to the averaged pupillary size of left and right eye 
to form the average VLP PD signal. We then extracted numbers 
and amplitudes of peak occurences for left, right and average 
VLP and LP PD signals as well as the ratio of peak occurances 
in VLP to those in LP for the left, right and average signals. 

From these data we collected a total of 119 features across 
the four physiological signals: 34 (BVP) + 23 (GSR) + 23 (ST) 
+ 39 (PD). 

C. Features Selection 

While large numbers of features can be derived from 
physiological signals to make predictions, this full set of 
features may include irrelevant features. These redundant 
features may outweigh the more effective features and affect 
classification performance, especially for a small dataset. 
Hence, we applied feature selection to reduce the chance of 
overfitting, along with early stopping. Inspired by [42] where 
classifiers trained with subsets of physiological features 
selected by Genetic Algorithms (GAs) outperform other feature 
selection methods, in this work we used a GA for feature 
selection.  

We set the initial population for the GA to use all features, 
and we set a chromosome as a binary string where the index for 
each bit represents a specific feature, and the value indicates if 
the feature is used for classification. The optimisation goal of 
the GA is to find better subsets of features as candidate 
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chromosomes by determining the presence or absence of every 
possible feature in the model, using the performance of a 
classifier as the fitness function.  

D. Classification  

In this study, we were interested in determining the trusting 
and doubting subjective beliefs of presenters using a 
combination of observer BVP, GSR, ST, and PD measurements 
as monitored signals. Classification was attempted via NN, a 
nonlinear classifier containing several hidden layers, each of 
which performs a non-linear transformation 𝑥𝑖+1 =  𝜎(𝑤𝑖𝑥𝑖 +
𝑏𝑖) where 𝑥𝑖  is the input of the 𝑖  th layer, 𝑤𝑖  and 𝑏𝑖 are the 
weight matrix and bias, and 𝜎 is the activation function.  

To evaluate the difference between the generalized veracity 
detection method that does not take individual participant 
differences into account and personalized veracity detection, we 
performed classification in three different ways by building 1) 
generalised, 2) personalised, and 3) group-personalised veracity 
detection models. 

1) Generalised Veracity Model: In the first approach, a 
generalized NN was trained using a leave-one-participant-out 
validation scheme, in which data from one participant were 
used as testing data and data for remaining participants were 
treated as training data. The NN was a fully connected neural 
network with a sigmoid hidden layer of size 512 and an output 
layer of two output neurons, representing the trusting and 
doubting subjective beliefs of presenters. The number of hidden 
neurons was set to 512 after we tested our neural networks with 
different hidden neuron size from 10 to 1024 and found 512 to 
be optimal. The NN was trained with the Adam optimizer [43] 
using backpropagation with the Cross-Entropy loss function. 

2) Personalised Veracity Model: Since people have been 
found to have different reactions to the same stimulus [17], [18], 
a generic model trained to estimate presenters’ subjective belief 
is limited in performance. Therefore in the second approach, we 
trained a multi-task learning neural network (MTL-NN) to 
account for inter-individual variability. A MTL-NN solves 
multiple tasks simultaneously with a shared representation of 
the tasks. In other words, a MTL-NN contains several initial 
layers shared across all tasks, and 𝑁 task-specific classifiers, 
one for each task, where 𝑁  is the number of tasks. The 
optimization of loss functions is done concurrently by switching 
between different tasks. 

As depicted in Fig. 2, in this model, we treated assessing the 
subjective belief of a viewed presenter for an observer as a 
single task. For shared layers, we used two fully-connected 
sigmoid layers with 350 neurons. The participant-specific 
classifiers contain a fully-connected sigmoid layer with 50 
hidden neurons and an output layer with 2 output neurons, 
which indicate the trusting or doubting subjective beliefs of 
presenters. The Cross-Entropy was optimised as an objective 
function with Adam optimiser [43]. For each participant, a 
random 80%-20% split was used to partition data into training 
and testing sets. 

3) Group Personalised Veracity Model: The second 
approach above is only valid when each person has sufficient 
labelled data. Moreover, one major limitation of such a method 

is that it cannot generalize to new users. Thus, inspired from  

[44] where MTL was used to predict people’s mood by their 
personality and gender, and from [17], [18] in which people 
with different gender and age were found to be affected 
differently by the same stimulus, we first clustered observers by 
their gender, age and ethinicity, and treated estimating viewed 
presenters’ subjective belief for a given cluster as one task. This 
method can deal with new users by assigning them to 
appropriate clusters based on their gender and age. We applied 
a K-means clustering algorithm to observers’ gender and age, 
and assess the quality of clustering using silhouette score [45], 
a measure of how similar each sample is to its own cluster 
compared to other clusters. In this study, the highest silhouette 
score was achieved when 𝐾 = 3.  

Then we built a MTL-NN with 𝐾  participant-specific 
classifiers, one for each group of participants, as Fig. 2 shows. 
We treated assessing the subjective belief of presenters for a 
group of similar observers based on gender and age as one 
single task. We used two fully-connected sigmoid layers with 
350 neurons for shared layers and one full-connected sigmoid 
hidden layer with 100 hidden neurons plus a fully-connected 
output layer with 2 output neurons for each group-specific 
layer.  The model was trained with the Adam optimiser [43] and 
cross-entropy was used as an objective function. For each 
participant, a random 80%-20% split was used to partition data 
into training and testing sets. 

IV. RESULTS AND DISCUSSION 

To evaluate the effectiveness of our models, we used 
accuracy, precision, recall, and F1-score as evaluation 
measures. Performance of all three models was calculated based 
on the average results of 10 runs. 

A. Observers’ Veracity Judgments 

We first examined how well our observers were able to 
distinguish between the trusting and doubting subjective belief 
of presenters in videos. As listed in TABLE I, the overall 
accuracy was 52%, slightly above the chance level of 50%. This 
is consistent with the literature [5] and with earlier findings of 
the accuracy of people’s conscious judgments of the veracity of 
smiles [36], anger [46], and of depression levels [47], which are 
all only marginally higher than chance levels. This lack of 
recognition accuracy could even have been exacerbated if our 
presenter participants were recruited from an actor population 

Fig. 2. Multi-task learning neural network architecture with two shared layers, 

and a participant- / group-specific layer. 
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who had previously received sufficient training in respect of 
promoting products with exaggerated or misleading statements. 
Future research should explore the accuracy of conscious 
judgments from observers who viewed videos of experienced 
actors as presenters. 

The average ratios of consciously distinguishing doubting 

and trusting subjective belief correctly were 55% and 48%.  

B. Generalised Classification 

We first trained the generalised NN using a leave-one-
participant-out validation scheme. We also tested two standard 
classifiers as a baseline: Random Forest (RF) and support vector 
machine (SVM) with linear kernel. In addition, since NNs 
benefit from large input size, we tested the performance of these 
models on the full set of 119 features. The veracity detection 
performance of these models is summarised in TABLE II, and 
the performance of our generalised model on different beliefs 
can be found in TABLE III.  

As shown in TABLE II, our generalised veracity model 
achieved a classification accuracy of 63% with all features, 
while RF and SVM reached 59% and 58% with a subset of 
features selected by GA, respectively. Statistical analysis was 
conducted on the results using the Student’s t-test since 
different models trained with physiological features share 
normality and equality of variance across comparison groups. 
In accordance with the Student’s t-test, our generalised veracity 
model performed significantly better than RF and SVM (p < 
0.005). Also, similar to [44], our generalised NN performed 
better with a full set of features than with features selected by 
GA (p<0.01). This may imply that NN compared to RF and 
SVM may be a more effective model to detect observer 
responses to the veracity of others. The most effective feature 
set is the full set of features. Therefore, the remaining two 
models, personalised classifier and group personalised 
classifier, are trained on NNs with all features. 

The result achieved by our generalised model was also 
statistically significantly better when compared to the null 
hypothesis that each class has equal chance of being selected by 
the classifier (p < 0.01) and when compared to observers’ 
conscious judgments shown in TABLE I (p < 0.05). It could 

TABLE I. RESULTS OF OBSERVERS SUBJECTIVE VERACITY JUDGMENTS ON 

PRESENTERS BELIEF 

Presenter Belief 
Observer Subjective Judgment 

Precision Recall F1 score 

Doubting 0.52 0.55 0.53 

Trusting 0.52 0.48 0.5 

Average 0.52 0.52 0.52 

Overall Accuracy 0.52 

TABLE II. PERFORMANCES OF GENERALISED VERACITY DETECTION MODEL  

Classifier Accuracy Precision Recall F1 score 

RF 0.59 0.59 0.58 0.59 

RF (all features) 0.56 0.56 0.55 0.55 

SVM 0.58 0.58 0.58 0.58 

SVM (all features) 0.55 0.54 0.55 0.55 

Our generalised NN 0.61 0.61 0.61 0.60 

Our generalised NN 

(all features) 
0.63 0.64 0.64 0.63 

imply that although humans are not good at consciously 
detecting the subjective belief of others, in general they can 
emotionally sense deception in the content. Observers’ 
physiological changes due to presenters’ deceiving behaviours 
can be detected by computational classifiers (such as neural 
networks). In other studies which examined the veracity of two 
basic emotions [36], [46], it has also been found that human 
unconscious physiological response is better than their 
conscious judgment. Taken together, it could suggest that 
unconscious responses from instinctive human ability, which 
has been adaptively evolved by natural selection, can make use 
of cues to identify deceiving individuals without being 
influenced by conscious biases. 

However, as TABLE III shows, in the doubting condition 
our generalised model only outperformed observers’ random 
subjective judgements by 3% in recall (p<0.005), meaning that 
42% of doubting observations could not be correctly estimated 
by our generalised model. Similarly, under the trusting 
condition, the generalised model could only identify 59% of the 
trusting observations accurately. This could be due to varying 
patterns of physiological responses from observers evoked by 
the same stimulus,  and thus a generalised model trained on a 
population-based approach may not be optimal.  

C. Personalised Classification 

Taking individual differences into account, the second 
classification approach trained an MTL-NN where 23 
participant-specific classifiers were built, one for each observer. 
For each participant, a random 80%-20% split was used to 
partition data into training and testing sets. The overall 
classification results are listed in TABLE IV. 

 Personalised classification resulted in an overall accuracy 
of 68% and an average precision, recall and F1 score of 72%, 
74% and 72% respectively. All results were statistically 
significant compared to chance level classification for all 
observers (p<0.01), and generalised classification (p<0.01). For 
both the doubting and trusting conditions, personalised 
classification outperforms the generalised model in all measures 
(p<0.01 in all cases). The personalised model can recognise 
more doubting and trusting observations correctly than the 
generalised model; an increase of at least 12% was obtained on 
recall in the doubting condition and on precision in the trusting 

TABLE III. OVERALL PERFORMANCES OF GENERALISED VERACITY 

DETECTION MODEL ON DOUBTING AND TRUSTING CONDITION 

Presenter Belief 
Generalised Veracity Model 

Precision Recall F1 score 

Doubting 0.68 0.58 0.62 

Trusting 0.59 0.70 0.64 

Average 0.64 0.64 0.63 

Overall Accuracy 0.63 

TABLE IV. OVERALL PERFORMANCES OF PERSONALISED VERACITY 

DETECTION MODEL. 

Presenter Belief 
Personalised Veracity Model 

Precision Recall F1 score 

Doubting 0.71 0.74 0.73 

Trusting 0.70 0.74 0.7 

Average 0.72 0.74 0.72 

Overall Accuracy 0.68 
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condition. Therefore, the personalised model is more effective 
in estimating subjective belief of other individuals than 
detectors trained on population averages. 

However, on an individual basis, it has been observed that 
the effectiveness of the personalised classifier varied among 
different observers. One possible explanation is that since 
observers with different age, gender and ethnicity seem to 
respond differently towards the same stimulus, they may have 
varying patterns of physiological signals corresponding to the 
same manipulated information [17], [18]. Also, this could be 
because the number of viewed sessions for each observer in this 
study may not be sufficient to build a robust model on an 
individual scale. Future study could examine the minimal 
number of presenters’ videos viewed by each observer required 
to obtain a highly accurate observer-based classifier. 

D. Group Personalised Classification 

To validate whether observers’ attributes create a difference 
in their physiological responses to manipulated subjective 
belief, we trained a group personalised veracity classifier by 
first clustering observers by their gender, age and ethnicity and 
then building an MTL-NN with several group-specific 
classifiers, one for each group. For each group of participants, 
a random 80%-20% split was used to partition data into training 
and testing sets. The overall classification results are provided 
in TABLE V, and performances of the models on each group of 
observers are listed in TABLE VI.  

This group-personalised model resulted in a mean accuracy 
of 88%. The average precision, recall and F1 score varied 
between 88%-89%. This is a very substantial improvement over 
the close-to-chance results from conscious choices, especially 
noting that physiological signals are highly noisy data. 

When compared to personalised and generalised models, the 
group-personalised model is more accurate, indicated by higher 
overall accuracy and higher other measures in both doubting 
and trusting conditions (p<0.01 in all measure comparisons). As 
clearly seen from TABLE III, IV and V, using MTL to 
personalise NN models by multitasking over clusters of similar 
observers provides dramatic improvements to subjective belief 
veracity estimation performance. The improvement in accuracy 
over the non-personalised and personalised models is at least 
20%. The increase in F1 score also indicates that the group-
personalised approach can better recognise both trusting and 
doubting observations.  

Despite the impressive performance of the group-
personalised model, as listed in TABLE VI, there were 
differences in effectiveness on estimating subjective beliefs of 
presenters, with the second observer group (which forms a more 
diffuse cluster than the other two) being lower than the other 
two groups, though still well above chance. This could imply 
that besides observers’ age, gender and ethnicity that have been 
considered, there might be other factors impacting the 
capability of veracity models trained on physiological responses 
from groups of observers. For example, as emotional responses 
to stimuli can depend on personality [48] and familiarity 
towards stimuli [49], future work could examine the impact of 
observers’ personality on the group-personalised veracity 
model. 

TABLE V. OVERALL PERFORMANCES FOR GROUP PERSONALISED VERACITY 

DETECTION MODEL. 

Presenter Belief 
Group Personalised Veracity Model 

Precision Recall F1 score 

Doubting 0.88 0.91 0.89 

Trusting 0.91 0.88 0.89 

Average 0.89 0.88 0.89 

Overall Accuracy 0.88 

TABLE VI. PERFORMANCES OF GROUP PERSONALISED VERACITY DETECTION 

MODEL ON EACH GROUP OF OBSERVERS 

Group 
Group Personalised Veracity Model 

Accuracy Precision Recall F1 score 

1 0.91 0.91 0.91 0.9 

2 0.84 0.85 0.85 0.84 

3 0.90 0.92 0.92 0.92 

Average 0.88 0.89 0.89 0.89 

 

V. CONCLUSIONS AND FUTURE WORK 

 Our work explored physiological signals from observers to 
detect the doubt effect where a presenter’s subjective belief in 
some content manipulated. We showed that a generalised NN 
trained on a population base reached a higher accuracy in 
differentiating doubting and trusting information compared with 
the conscious veracity judgments from the same observers. This 
recognition was significantly improved when MTL was used to 
account for individual differences or group differences. This is 
attributable to the ability of MTL which can both allow each 
individual to have a model customised for them and share data 
of other people through shared hidden layers.  

 Presenters recruited in this study are naïve individuals with 
no acting experience. In future work, some actors could be 
recruited as presenters to examine the effect of acting expertise 
to the ability for observers to differentiate true statement from 
fake or exaggerated information. Attributes of observers, such as 
their personality, could be collected to investigate further group 
distinctions for group differences classifications. Additional 
activity such as gestures [50] could also be tracked. With 
increasing amounts of data collected from wider groups of 
observers, stronger conclusions may be drawn in subsequent 
studies and allow the use of recent deep learning models, such 
as Convolutional Neural Networks or Long Short-Term 
Memory, which may achieve more accurate recognition results.  

REFERENCES 

[1] L. ten Brinke, K. D. Vohs, and D. R. Carney, “Can ordinary people 
detect deception after all?,” Trends Cogn. Sci., vol. 20, no. 8, pp. 579–
588, 2016. 

[2] A. Rhodes and C. M. Wilson, “False advertising,” RAND J. Econ., vol. 
49, no. 2, pp. 348–369, 2018. 

[3] M. Tsikerdekis and S. Zeadally, “Online deception in social media,” 
Commun. ACM, vol. 57, no. 9, pp. 72–80, 2014. 

[4] W. Von Hippel and R. Trivers, “The evolution and psychology of self-
deception,” Behav. Brain Sci., vol. 34, no. 1, pp. 1–16, 2011. 

[5] C. F. Bond Jr and B. M. DePaulo, “Accuracy of deception judgments,” 
Personal. Soc. Psychol. Rev., vol. 10, no. 3, pp. 214–234, 2006. 

[6] J. Ulatowska, “Different questions--different accuracy? The accuracy of 
various indirect question types in deception detection,” Psychiatry, 
Psychol. Law, vol. 21, no. 2, pp. 231–240, 2014. 

[7] B. M. DePaulo, J. J. Lindsay, B. E. Malone, L. Muhlenbruck, K. 
Charlton, and H. Cooper, “Cues to deception.,” Psychol. Bull., vol. 129, 

3180

Authorized licensed use limited to: CURTIN UNIVERSITY. Downloaded on June 09,2021 at 13:47:24 UTC from IEEE Xplore.  Restrictions apply. 



no. 1, p. 74, 2003. 

[8] J. S. Albrechtsen, C. A. Meissner, and K. J. Susa, “Can intuition improve 
deception detection performance?,” J. Exp. Soc. Psychol., vol. 45, no. 4, 
pp. 1052–1055, 2009. 

[9] W. Ambach and M. Gamer, “Physiological Measures in the Detection of 
Deception and Concealed Information,” Detect. Concealed Inf. Decept., 
p. 1, 2018. 

[10] K.-H. Jung and J.-H. Lee, “Cognitive and emotional correlates of 
different types of deception,” Soc. Behav. Personal. an Int. J., vol. 40, 
no. 4, pp. 575–584, 2012. 

[11] S. Ströfer, M. L. Noordzij, E. G. Ufkes, and E. Giebels, “Deceptive 
intentions: Can cues to deception be measured before a lie is even 
stated?,” PLoS One, vol. 10, no. 5, p. e0125237, 2015. 

[12] A. Elkins, S. Zafeiriou, M. Pantic, and J. Burgoon, “Unobtrusive 
deception detection,” in The Oxford handbook of affective computing, 
Oxford Univ. Press, 2014. 

[13] A. van’t Veer, “Effortless morality: Cognitive and affective processes in 
deception and its detection,” Diss. Tilbg. Univ., 2016. 

[14] S. Caldwell, T. Gedeon, R. Jones, and L. Copeland, “Imperfect 
Understandings: A Grounded Theory And Eye Gaze Investigation Of 
Human Perceptions Of Manipulated And Unmanipulated Digital 
Images,” in Proceedings of the World Congress on Electrical 
Engineering and Computer Systems and Science, 2015, vol. 308. 

[15] G. Duran, I. Tapiero, and G. A. Michael, “Resting heart rate: A 
physiological predicator of lie detection ability,” Physiol. Behav., vol. 
186, pp. 10–15, 2018. 

[16] X. Zhu, Z. Qin, T. Gedeon, R. Jones, M. Z. Hossain, and S. Caldwell, 
“Detecting the Doubt Effect and Subjective Beliefs Using Neural 
Networks and Observers’ Pupillary Responses,” in International 
Conference on Neural Information Processing, 2018, pp. 610–621. 

[17] M. Bianchin and A. Angrilli, “Gender differences in emotional 
responses: A psychophysiological study,” Physiol. Behav., vol. 105, no. 
4, pp. 925–932, 2012. 

[18] V. Orgeta, “Specificity of age differences in emotion regulation,” Aging 
Ment. Heal., vol. 13, no. 6, pp. 818–826, 2009. 

[19] J. DiNicolantonio, The Salt Fix. Harmony, 2017. 

[20] S. M. Stanford et al., “Diabetes reversal by inhibition of the low-
molecular-weight tyrosine phosphatase,” Nat. Chem. Biol., vol. 13, no. 
6, p. 624, 2017. 

[21] C. Cassella, “We Just Got More Compelling Evidence That The Moon Is 
Loaded With Water,” Science Alert, 2018. . 

[22] G. Lisa, “Curiosity finds that Mars’ methane changes with the seasons,” 
ScienceNews, 2018. [Online]. Available: 
https://www.sciencenews.org/article/curiosity-finds-mars-methane-
changes-seasons. 

[23] Y. Paramhansa, “Autobiography of a Yogi,” Ananda India, 2018. . 

[24] D. N. Murphy, The Marlowe-Shakespeare Continuum. 2013. 

[25] K. Miller, “Should you avoid bananas if you’re trying to lose weight?,” 
health24, 2017. . 

[26] Empatica, “E4 wristband.” [Online]. Available: 
https://www.empatica.com/research/e4/. [Accessed: 30-May-2018]. 

[27] TheEyeTribe, “The EyeTribe.” [Online]. Available: 
http://theeyetribe.com/theeyetribe.com/about/index.html. 

[28] K. Gouizi, F. Bereksi Reguig, and C. Maaoui, “Emotion recognition 
from physiological signals,” J. Med. Eng. Technol., vol. 35, no. 7, pp. 
300–307, 2011. 

[29] N. Sharma and T. Gedeon, “Modeling a stress signal,” Appl. Soft 
Comput., vol. 14, pp. 53–61, 2014. 

[30] P. Ekman, “An argument for basic emotions,” Cogn. Emot., vol. 6, no. 
March 2014, pp. 37–41, 2008. 

[31] J. Kim and E. André, “Emotion recognition based on physiological 
changes in music listening,” IEEE Trans. Pattern Anal. Mach. Intell., 

vol. 30, no. 12, pp. 2067–2083, 2008. 

[32] R. M. Stern, W. J. Ray, and K. S. Quigley, Psychophysiological 
recording. Oxford University Press, USA, 2001. 

[33] F. Al-Shargie, T. B. Tang, and M. Kiguchi, “Mental stress grading based 
on fNIRS signals,” in Proceedings of the Annual International 
Conference of the IEEE Engineering in Medicine and Biology Society, 
EMBS, 2016, vol. 2016-Octob, pp. 5140–5143. 

[34] J. E. LeDoux and S. G. Hofmann, “The subjective experience of 
emotion: a fearful view,” Curr. Opin. Behav. Sci., vol. 19, pp. 67–72, 
Feb. 2018. 

[35] B. Laeng, S. Sirois, and G. Gredebäck, “Pupillometry: a window to the 
preconscious?,” Perspect. Psychol. Sci., vol. 7, no. 1, pp. 18–27, 2012. 

[36] M. Z. Hossain and T. Gedeon, “Effect of Parameter Tuning at 
Distinguishing Between Real and Posed Smiles from Observers’ 
Physiological Features,” in International Conference on Neural 
Information Processing, 2017, pp. 839–850. 

[37] A. Haag, S. Goronzy, P. Schaich, and J. Williams, “Emotion recognition 
using bio-sensors: First steps towards an automatic system,” in Tutorial 
and research workshop on affective dialogue systems, 2004, pp. 36–48. 

[38] P. C. Schmid, M. S. Mast, D. Bombari, F. W. Mast, and J. S. Lobmaier, 
“How mood states affect information processing during facial emotion 
recognition: an eye tracking study,” Swiss J. Psychol., 2011. 

[39] A. Kushki, J. Fairley, S. Merja, G. King, and T. Chau, “Comparison of 
blood volume pulse and skin conductance responses to mental and 
affective stimuli at different anatomical sites,” Physiol. Meas., vol. 32, 
no. 10, p. 1529, 2011. 

[40] X. Zhu, T. Gedeon, S. Caldwell, and R. Jones, “Visceral versus Verbal: 
Can We See Depression?,” Acta Polytech. Hungarica, vol. 16, no. 9, 
2019. 

[41] P. Van Gent, H. Farah, N. van Nes, and B. van Arem, “Analysing Noisy 
Driver Physiology Real-Time Using Off-the-Self Sensors: Heart Rate 
Analysis Software from the Taking the Fast Lane Project.,” J. Open Res. 
Softw., 2018. 

[42] J. S. Rahman, T. Gedeon, S. Caldwell, R. Jones, M. Z. Hossain, and X. 
Zhu, “Melodious Micro-frissons: Detecting Music Genres from Skin 
Response,” in Proceedings of the International Joint Conference on 
Neural Networks, 2019, vol. 2019-July, pp. 1–8. 

[43] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 
arXiv Prepr. arXiv1412.6980, 2014. 

[44] S. A. Taylor, N. Jaques, E. Nosakhare, A. Sano, and R. Picard, 
“Personalized Multitask Learning for Predicting Tomorrow’s Mood, 
Stress, and Health,” IEEE Trans. Affect. Comput., 2017. 

[45] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and 
validation of cluster analysis,” J. Comput. Appl. Math., vol. 20, pp. 53–
65, 1987. 

[46] L. Chen, T. Gedeon, M. Z. Hossain, and S. Caldwell, “Are you really 
angry?: detecting emotion veracity as a proposed tool for interaction,” in 
Proceedings of the 29th Australian Conference on Computer-Human 
Interaction, 2017, pp. 412–416. 

[47] X. Zhu, T. Gedeon, S. Caldwell, and R. Jones, “Detecting emotional 
reactions to videos of depression,” in IEEE International Conference on 
Intelligent Engineering Systems, 2019. 

[48] S. Zhao, G. Ding, J. Han, and Y. Gao, “Personality-Aware Personalized 
Emotion Recognition from Physiological Signals.,” in IJCAI, 2018, pp. 
1660–1667. 

[49] A. Kawakami, K. Furukawa, K. Katahira, K. Kamiyama, and K. 
Okanoya, “Relations between musical structures and perceived and felt 
emotions,” Music Percept. An Interdiscip. J., vol. 30, no. 4, pp. 407–417, 
2013. 

[50] R. Gravina and Q. Li, “Emotion-relevant activity recognition based on 
smart cushion using multi-sensor fusion,” Inf. Fusion, vol. 48, pp. 1–10, 
2019. 

 

3181

Authorized licensed use limited to: CURTIN UNIVERSITY. Downloaded on June 09,2021 at 13:47:24 UTC from IEEE Xplore.  Restrictions apply. 


